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Abstract

This paper considers an optimal regulator problem which is different
from the conventional linear quadratic cost problem but leads to a stable
linear feedback control. The problem considers a double integral quadratic

cost function and an integral constraint on state trajectories. The optimal |

open~loop control is transformed to a closed-loop control and subsequently

a modified control is obtained based on a receding horizon notion. This
modified control law is shown to be asymptotically stable and to result in

a new method for stabilizing linear time-varying systems, in addition to the
methods of [1] and [2], as well as providing an easy means to stabilize time-

invarient systems comparable to the method of [3]. Moreover, the gain matrix

N o F AR Tk

for the modified control is obtained from a Riccati-type equation over a
finite time interval, and a large class of nonlinearities can be allowed in

the closed-loop without destroying its stability.
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I. Introduction

Consider a linear time-varying system

x(t) = A(t)x(t) + B(t)u(t) (1.1)

v(t) = C(t)x(t) 1.2}

where x(to) = X and (a(t), B(t), C(t)) are nxn, nxm and pxn piecewise contin- {

ous matrices. There have been manv studies in obtaining stable linear feed- l?

back controls with some optimal basis. The most familiar of these is ob-
tained from the steady state optimal control for the quadratic cost
rE

Jul = J F Ly (o)o)v(t) + u'(£)R(£)ult)lat (1.3)

t
(o]

with a free terminal condition, where Q(t) and R(t) are piecewise continuous

weighting matrices with 0(t) 2 0 and R(t) > 0 [1]. Recently in [2] we sugpested
another stable linear feedback control which is based on a receding horizon

notion applied to the above quadratic cost problem with a fixed terminal constraint
x(te) = 0. (1.4)
This is equivalent to the following integral constraint on the control

T
f Foce ,0)B(tHult)dt = - x(t ), (1.5)
(o] o

€
o

where #(t,t) is the state transition matrix for (1.1). We have shown in [2]

that this control law, which is obtained from the above problem by a receding
horizon notion (tf =t + T), stabilizes the linear svstem (1l.1) under certain
conditions, and that the gair matrix is obtained from a Riccati differential .4
equation defined over a finite time interval of arbitrarily short duration. Such £

a receding horizon notion has also been discussed by Thomas for time invariant

systems and with Q = 0 [10].
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In addition to stability, the well-known free terminal steadv state optimal
control of [1,4] possesses the important property that it tolerates certain
nonlinearities in the feedback loop without destroving stability. Specifically,
the resulting system has been shown in [5,9] to possess infinite gain margin
and a 60° phase margin under certain conditions which include Q(t) 2 al for
some a > 0. The modified receding horizon control in {2] can be shown to possess
the same property. These kinds of relationships between system coefficients
and the tolerance of nonlinearities in the feedback loop have been extensively
studied, particularly the absolute stability problem for time invariant svstems
[7,8], commencing with Luré.

The purpose of this paper is to introduce an optimal regulator problem
which is different from the conventional linear quadratic cost problem but whose
modification leads to another stable linear feedback control with tolerance
for a large class of nonlinearities in the feedback loop. In Section II a double
integral control energy problem with a compatible constraint is formulated and
its optimal open-loop control solution is transformed to a clo;ed-loop linear
state feedback control. In Section III it is shown that the modified control
law obtained by the receding horizon notion is a uniformlv asymptotically stable
control which allows for a large class of nonlincarities in the feedback loop.
The corresponding results for linear time invariant systems are stated in Section

IV.

II. A Double Integral Minimum Control FEnergy Problem

For the given system (1.1)-(1.2), we consider a double integral control energy

function

t T
J(u) = I J ( u'(s)R(s)u(s)dsdr {2:1)

(e} (o]




mw'—rfrw-‘ -
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and a constraint which is similar to (1.5) but is compatible with the cost

function (2.1):

tf T

J J ®(t ,s)B(s)u(s)dsdr = -x(t ). (2.2)

L YO =
o o

From the variation of constants formula, the constraint (2.2) on the control
is equivalent to the following integral constraint on the state:

t

x(to) + J J o(to,s)x(s)ds = (g -t )x(t ). (2.3)

The solution to the above problem:is given as follows.

T
(o]

Theorem 2.1, The optimal control law for the svstem (1.1) which minimizes the

cost function (2.1) subject to the constraint (2.2) (or equivalent v (2.3)) is

given by
u(t) = - R7H OB (D)6 (r )P (e WX In(t ) (2.4)
o Gis £ o
where
. - e (T -1
P(t t.) = f J ¢(t_,s)B(s)R "(s)B'(s)®'(t_,s)dsdr. (2.5)
E o' £ . o o
8 t i
jl_ o o
L] ; . . . s
o Proof: The proof is straightforward bv introducing a Lagrange multiplier X for

the constraint (2.2). The necessary condition for minimizing the cost function

B tf 3 l
| 8 JA(U) = J J (5 u' (s)R(s)u(s) + X'ﬁ(to,s)B(s)u(s)}dsdr

- :
| B (o} (o]
1 2 9J P
1 is that X 20, L€,
e Ju

P(s)u(s) + B'(S)?'(to.s) A= 0,




el

Thus the optimal control is given by u(s) = - R-l(s)B'(s)Q'(to,s)A. Combining
this control and the constraint (2.2) vields A = ﬁ-l(to,tf)x(to), which completes

the proof.

The double integral matrix ?(to,tf) can be expressed as

P(t ,t.) = [tf P(t_,1)d (2.6) i
o'te) © IR o7t .
(o]

where the controllability matrix P(to,r) is obtained from

it

P(s,t) = -A(s)P(s,t) - P(s,t)A'(s) + B(s)R_l(s)B'(s) (2. 7)

wia
n

i with the boundarv condition P(t,t) = 0. By combining (2.1) and (2.4), the optimal

| 8 cost is given by

\P = ' Sl
}; i J(u) = x (to)P (to,tf)x(to).

fg f Since the controls in (2.1) are more heavily weighted around the initial time
E 5

| % than the terminal time, it is believed that the control mahnitude of (2.4) tends
“’ £ A to be smaller than that of a conventional optimal control solution near the in-
B ]
k| % itial time. It is noted that the optimal open-loop control (2.4) does not juar- ]
S

-! i antee the terminal constraint x(tf) = 0 because the constraint (2.3) does not
k| % necessarily imply (1.u4).
L! % A closed-loop control can be defined from the open-loop control (2.4) by
.

'! ? replacing ty with t as follows:

| o o Yecrnteerpt 2

u(t) = =R "(t)B'(t)P (t.tf)x(t) (2.8)

where 5(t,tf) is piven by either (2.5) or (2.6) with to replaced by t. It is

noted that the closed-loop control (2.8) tries to satisfv the sliding constraint

——:




k. t
i x(t) + J ¥ 8(t,5)x(s)ds = (t-t)x(t) (2.9)
|
t
’ at each instant "t". From this constraint it is readily seen that the closed-loop

control (2.8) guarantees the terminal constraint x(tf) = 0, in contrast with

the open-loop control (2.4), as can be seen by letting t approach te in (2.9).

It is the control (2.8) that will be modified by the receding horizon notion

in order to obtain a stable linear feedback control which satisfies the properties

mentioned in the Abstract.

III. A Modified Regulator for Time-Varying Systems

In addition to the infinite-time optimal control of [1,4] and the modified
receding horizon control of [2], we introduce in this section another stable
linear feedback control law from (2.8) which requires the integration of a
Riccati differential equation over a finite time interval and allows a large
class of nonlinearities in the feedback loop without destroying stability.

The following definitions are necessary for further analyses.
Definition: The pair {A(t),B(t)} is uniformly completely controllable if there

exists a positive constant 6c > 0 such that the following two conditions are

satisfied:
(a) a G W(t,t+6c) <a, I, for all t (3.1)
(b) ett, )| € ag(lt-t]), for all t,t (3.2)

whevre the controllahility matrix H(tn,tl) is Aefined hy

t
S A '
w(to,tl) = I ¢(t°,t)B(t)B'(t)o (to,t)dt (3.3)

t
o

A
]

R
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and ¢(t,t°) is the state transition matrix for (1.1). Inequalities (3.1) and

(3.2) are presumed to hcld for some positive constants a. and @5, and for an

3

appropriate function a,(+) which maps R into R and is bounded on bounded in-
tervals.
Uniform complete observability of the pair {A(t),C(t)} is defined similarly

with the observability matrix
Y1
) = J ¢'(t,to)C’(t)C(t)O(t,to)dt (3.4)

corresponding to an aporopriate 60 > 0. Let 8§ = max {6 ,60}. Yow consider a
o

matrix Riccati equation
- %; P(s,t1) = - A(s)P(s,T) - P(s,1)A'(s) -P(s,7)C'(5)Q(s)C(s)P(s,T)

+ B(s)R (s)B'(s) (3.5) "

with the boundary condition P(t,T) = 0. The Riccati equation (3.5) comes from
the fixed terminal quadratic cost problem (1.1)-(1.4). Note that Equation (2.7)

can be obtained from (3.5) by taking Q(s) = 0. The following results are necessary

for the main theorem. &

Lemma 3.1. Assume that a, I s R(t) < g I where a, and ag are positive constants.

(a) Assume that 0 g 0(t) < a I for some a, > 0. If the pair {A(t), B(t)} is

uniformly completelv controllable and C(t) is bounded, i.e., leter]] s m7 for

some a., > 0, then for a fixed T satisfving Sp < T < = there exist positive

7
constants ag and aq such that P(t,t+T) obtained from (2.6) and (3.5) satisfies

g T g P(t,t+T) s ag I for all ¢, (3.6)

(b) Assume that a . I ¢ 2t) € ag I for some a,, > 0. If the pairs {A(t),B(t)}

10




and {A(t),C(t)} are uniformly controllable and observable respectively, then for
a fixed T satisfying 6§ < T < » the relation (3.8) holds.

Proof: (a). It is shown in [2] that there exist positive constants @ and @5 |3

such that

a.. I € P(t,t+T) s a

4y I for all t. (3.7)

12

The upper bound of (3.6) follows from the fact that

t+T t+T
J P(t,t)dt ¢ J P(t,t+T) dt § TP(t,t+T) € T a

T t 12

since P(t,tl) < P(t,T2) forati izt The lower bound follows from

1L 28

t+T t+6c t+T
J PEt,v) dr = J P(t,7)dT + J P(t,t)dr
t t t+6c

t+4 t+T
2 J ¢ P(t,r)dr + J P(t,t+8 )dt 2 (T - 6 )°11’
t t+6 - &
o
(b) The dual form of inequality (3.7) can be found in [1] and [6]. Inequality
(3.6) follows from the above argument. This completes the proof.
By sliding the terminal time of (2.8), i.e. invoking the receding horizon

notion, we now introduce a modified control law:

u(t) = =7 IR ()P e, e+ TIx(), T > 6 (3.8)
& PR 12
where P(t,t+T) = f P(t,t)dt and P(t,t) is obtained from (2.,7) by integrating
t

backward from s = 1 to s = t. It is casily seen that (3.8) is the optimal control

for the system (1.1) which minimizes the moving cost function

-5 G
J [ u'(s)R(s)u(s)dsdr (3.9)
t ;-

D e e
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it
with the moving boundary condition on the control

t+T 1
I f ®(t,s)B(s)ul(s)dsdr = - x(t), (3.10)
T o

or equivalently with the moving boundary condition on the state

t+T
x(t) + J o(t,s)x(s)ds = Tx(t). (3.11)

Tt
Important properties of the control law (3.8) which will now be demonstrated
are (i) the closed-loop system is asymptotically stable, (ii) the gain matrix
in (3.8) is obtained from integrating a Riccati equation over a finite time
interval, and (iii) the closed-loop system (see Fig. 1) tolerates a la;ge class
of nonlinearities in the feedback loop corresponding to a chosen small value
of T. In the following theorem the matrix P(t,t+T) in (3.8) is assumed to be
obtained from (3.5) instead of (2.7) in order to facilitate a weighting of the
state through Q(t).
Theorem 3.1. (a) Assume that @ Ig R(t) s ag I and O < Q(t) < a, I. If the
pair {A(t), B(t)} is uniformly completely controllable and C(t) is bounded, then
for a fixed T satisfving Gc < T ¢ 2, the system (1.1) with the control law (3.8)
is uniformly asymptotically stable where P(t,t+T) is obtained from (3.5). Further-

more, the system (1.1) is uniformly asymptotically stable with either of the

following control laws:

(1) u(t) = - pORIE)B ()P (¢, t4T)x(1),T > 8, (3.12)
where T and the mxm time-varying matrix ¢(t) are such that

Y(E)R(t) + R(E)U(t) 3 TR(L), (3:13)




i
or (ii) u(t) = E(-R—l(t)B'(t)ﬁ-l(t,t+T)x(t)), T8 (3.14)
where é(') maps R" into ®" such that
WIR(OEW) 3 3 w'R(Ow, Ve @&, (3.15)

(b) Assume that a, I s R(t) s.agland o,y I ¢ Q(t) s a I. If the pairs

{A(t), B(t)} and {A(t), C(t)} are uniformly completely controllable and obser- !

vable respectively, then the above results in (a) hold with Gc replaced by §. | 4

Proof: Take as a Lyapunov function for the closed-loop system (1.1)-(3.8) with

G350

Yix.t) = x'ﬁ'l(t,t+r)x. (3.16)

From Lemma 3.1(a) the function (3.1€) has uniform lower and upper bounds. The |

derivative of (3.16) along the solution is given by ,

;'E-l(t,t+T)x + x'ﬁ'l(t,t+T)§ + x! 9—-§'l(t,t+T)x ]

V(x,t) -

%' LACE)-B()O ()R IC(E)B ()P 1 (t,e+T)) 'L (e, t4T)
+ Pt t4T) (AG)-BCO)W(E)R T(£)B ()P (e, t4T))

- " §—l(t,t+T)[%? B, t+T) 181 (¢, t+T)} x. (3.17) 41

By integrating both sides of (3.5) we obtain

t+T 5 t+T {t+T
{ s P(t,t)dt = -A(t) I P(t,t)dT- | F(t,t)dr A'(t)
't e t e
t+T t+T b |
- J P(t,t)C'(t)Q(t)Cc(t)P(t,T)dT + J B(t)R “(t)B'(t)dr :
t t ]
: g t+T E
= =A(t)P(t,t+T) -P(t,t+T)A'(t) - J P(t,7)C'(t)Q(t)C(t)P(t,t)dr {
t i
I8
+ T B(£)R"L(1)B' (1), (3.18)




ST

from which follows that

-_1 L O sed -1 ~-1
P “(t,t+T) J - P(t,t)dT P "(t,t+T) = -P “(t,t+T)A(t) - A'(t)P ~(t,t+T)

t

+ T B7L(e,t+T)B(E)RI(E)B (£)B 1 (e, t4T)

3 tHT e
-P “(t,t+T) J Blt,v)ct(e)att)cCe)P(t, vidr B (t,t+T). (3.19)
t
Also we have that
& = d t+T t+’I‘a ;
az-P(t,t+T) it J P(t,t)dr = P(t,t+T)-P(t,t) + f Sz-P(t,r)dr. (3.20)

) =

Combining (3.17), (3.19) and (3.20) yields

3 t+T

© ~ - t+T
V(x,t) = - x'P l(1:,1:4-'1") {P(t,t+T) + J — P(t,t)dr - I .

= i = P(t,x)dr

++T a1
+ j P(t,T)C'(t)Q(t)C(t)P(t,t)dT + B(t)R “(t)[y'(t)R(t)
t

F RCOB(E) - TR(EIR () ()12 (e, t4T)x

< - x'ﬁ'l(t,t+T)P(t,t+T)§‘l(t,t+T)x

provided condition (3.13) holds. From (3.6) and (3.7) it follows that

V(x,t) € -ayy a;2 |x|2, which implies that the closed-loop system is uniformly
asymptotically stable. The proof concerning the control (3.14%)-(3.15) is exactly
the same as above. With y(t) = I, or §(w) = w, it is clear that T must be no

greater than 2. The proof of part (b) is also exactly the same as part (a). This

completes the proof.

D & T L ——— v
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It is noted that nonlinearities satisfying ¥(t) 2 %- are allowed in the
feedback loop for a single input system and that for a given nonlinear function
it is possible to find a suitable value of T in order to obtain a stable system.
It is also noted that the Lyapunov function (3.16) corresponds to the original
system (1.1)-(3.8), while that used for the proof of the control in [2] was de-
fined for the adjoint system in order to include the special case of Q(t) = 0.
It is interesting to investigate some relationships between the modified control
law (3.8) and the open loop control law (2.4) from which the control law (3.8)
is obtained. Ve show in Theorem 3.2 that the double (resp. single) integral
quadratic cost for the system (1.1) with the control (3.8) is not larger than
the double integral quadratic cost of the open loop control (2.4) with
te =2t + T if byt T g2 (resp. T < 1).

Theorem 3.2 The single and double integral quadratic costs for the system (1.1)

with the control (3.8) satisfy the following bounds:

t
i ~-1 5
J u'(t)R(t)u(t) dt < xéP (to,to+T)xo i T gl (3.21)

t T
1 " ,=-1 : g
I I u' (t)R(t)u(t)dtdr < xOP (to,to+T)xo 1f i et L B 2. (8.22)
Proof: Let F(t) = A(t) - B(t)R-l(t)B'(t)ﬁ—l(t,t+T) and let ¢F(t,to) be the state
transition matrix for F(t). The single integral quadratic cost with the feed-
s ] { Y 3] je -
back control (3.8) is given by on(to,tl)xo where "(to’tl) is the solution of

the matrix Riccati equation

d )
e J(t,tl)

F'(t)N(t,tl) + N(t,tl)F(t)

+ 5'1(t,t+T)B(t)R'l(t)e'(t)ﬁ"l(t.t+T) (3.23)




SNy

3 with the boundary condition N(tl,tl) = 0. From (3.20) and (3.18) we have ’
- %;-?'l(t,t+T) = P (B e, ) + BTH(e,e)R(2)

(2-T)?'1(t,t+T)B(t)R'1(t)B'(t)?'l(t,t+T) + §'l(t,t+T) [P(t,t+T) +

t+T ~_1 ‘
J B(t,7)C" (£)Q(£)C(t)P(t,1)dT] B H(t,t4T). (3.24) |
t |

1

Let E(t) = X(t,tl) - §-l(t,t+T). Then from (3.23) and (3.24) we have

- B(t) = F'(£)E(t) * E(L)F(t) - (1-T)§‘l(t,t+T)B(t)R'1(t)B'(t)ﬁ'l(t,t+T)

12501

- ﬁ'l(t,t+T)[P(t,t+T) + f P(t,r)c'(t)Q(t)c(t)P(t,r)dr]ﬁ'l(t,t+T)

t
(3.25)

with the boundary condition E(tl) = -§-l(tl,tl+T). From (3.25) it follows that

~-1 5 - ~~1
N(to,tl) - P (to,to+T) = E(to) < - ¢F(tlat°)P (tl,t1+T)¢F(tl,t°) (3.26)

provided T ¢ 1. In a similar way it can be shown that the double integral cost

with the control (3.8) is given by xéﬁ(to,tl)xo where ﬁ(to,tl) is the solution

i ;
% of the matrix Riccati equation |3
| 5 g 1
j - g7 He,t) = Fr(eu(e,t ) + N(t,t JF(t) a
s=1 =1 i ==l |
+ (t; = OF T(t,t+T)B(EIR “(£)B' ()P “(t,t+T) .

with the boundary condition ﬁ(tl,tl) = 0. Let E(t) = ﬁ(t,tl)-ﬁ'l(t,t+T).

Then we have

~E(t) = k'(t)i(thi(t)r(t)-(t-t1 + Z-T)i-l(t.t+T)B(t)R-1(t)B'(t)ﬁ-l(t,t#T) - 2(t),

i VDI oy,




s

= 13 =

where Z(t) is the nonnegative definite last term of (3.25). Thus we have a similar
inequality as (3.26) provided T + ty -t s 2. This completes the proof.

The relation (3.21) shows that the infinite time control energy is bounded
if the system is uniformly completely controllable. The results in this section
have simpler.forms in the case of time invariant systems as shown in the next

section.

IV. Linear Time Invariant Systems
In this section consider a linear time invariant system

x(t)

Ax(t) + Bu(t), x(to) =8 (4.1)

y(t) = Ccx(t) (4.2)
where {A,B,C} are constant matrices. If the pair {A,B} is completely controllable,
the minimization of the double integral quadratic control energy (2.1) with a

constant matrix R subject to the constraint (2.2) or (2.3) leads to the optimal

control law

1t

u(t) = - R svﬁ‘lctf-t)x(t) (4.3)

where

& e L L Ry
B(t) = I I & TOBR *pre " Sgage, (4.4)
(o] (o]

The result analogous to Theorem 3.1 for the time invariant case is contained in

the following.

Theorem 4.1 If the pair {A,B} is completely controllable, then the system (4.1)
is uniformly asymptotically stable with the feedback contrsl law

1

ult) = R8P 1 (T)x(t) (4.5)

where 0 ¢ © ¢ 2 and P(T) is obtained from

Sl s aaiin s & i




=1l4-

T
P(T) = J P(t)dt (4.6)
o]
and P(t) is given by
%t- P(t) = -AP(t) - P(t)A' - P(£)C'QCP(t) + BR 1B

(4.7)

1]
o

P(0)

for any Q 2 0 and R > 0. Furthermore, the system (1.1) is uniformly asymptoti-

cally stable with the control law:

u(t) = - w(t)R'lB'ﬁ'l(T)x(t), T>0 (4.8) |

where T and ¥(t) satisfy the relation (3.13) with a constant matrix R, or with {
the control law Rl
ult) = E(-R "B'F "(T)x(t)), T>0 (4.9)
where T and £(+) satisfy the relation (3.15).

From the special structure of a time invariant system, the condition of

Theorem 4.1 can be weakened as follows.

Proposition 4.1 If the pair {A,B} is stabilizable, then the system (1.1) is

uniformly asymptotically stable with the feedback control

1

u(t) = - R (mx(t), 0<T <2 (4.10)

where 5*(T) is the generalized inverse of the matrix ﬁ(T).

The proof of the above result is similar to the one in [2] and is chus
omitted here. It is noted that for the special case of Q = 0, é(t) in (4.3)
and (4.5) can be obtained very easily by a single intepration as shown below.

Integrating both sides of (4.7) with Q = 0 we obtain

P(t) = -~ AP(t) - P(t)A' + tBR'lB' i (4.11)
From (4.6) it follows that P(t) = %; P(t) so that B(t) satisfies
y d 5 P 5 % [ =1 '
ap P(t) = - AP(t) - P(t)A' + tER °D (4.12)

P(0) = 0.

ekl Vi S i aniiin

|
|
}
!

o —




=R

The control (4.5) with P(T) obtained from (4.12) is as easy to obtain as the one
in [3], but (4.5) has been shown here to allow a larger class of nonlinearities

in the feedback loop.

Some characteristics of the control (4.5) in the frequency domain will now

be considered. For notational convenience we define

>4

1

33 R o
k=Y, L= PN,

and (4.13)

~

~ A 5.1 : . =-1 -1 =-1
Q =P ~(T) P(t)C'QCP(t)dt P “(T) + P "(T)P(T)P “(T).
(o}

Then (4.7) is equivalent to the following matrix equation:

1

A'K + KA - T KBR "B'K + Q = 0. (4.14)

By a slight modification of the methods introduced in [5], (4.14) can be shown to

yield the following relation in the frequency domain:

'

1 e ke ¥ i}
[%— I - R? L(-sI - A) lBR 2] [—,:IL-.- I - R'lz L(sI - A) lBR '5]

) X

s ) =
I+ %-R igr(-sI ~A")Y"L Q(sI - A) 1BR7E, (4.15)

-

-

Relation (4.15) also implies

1 . i ) 1. - -1
[% I - RiL(-j0I - A)"1BR ’] [-% I - RiL(juI - A)"1BR ]

lb ) (4.16)
T

2

For simplicity we consider a single input system where R can be taken as unity,

B =b is a column vector and L = £ is a row vector. Relation (4.16) can be

expressed in-this case as follows:
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1 . -1 1
T~ Gl -A) D 27 . (4.17)

Inequality (4.17) implies that the Nyquist plot of the closed-loop transfer
function - 2(jwl - A)-lb lies outside a circle centered at - %-+ jo with radius

% as shown in Fig. 2. The key observation, as noted in [5], is that the number
of encirclemehts of any point inside this circle is the same. Theorem 4.1 in
conjunction with inequality (4.17) shows that the number of encirclements of
points lying on the real axis inside this circle is the same as the number

of poles of the transfer function in the closed righthand plane. From these

properties and Fig. 2 it is clear that the system employing the control law

(4.5) has an infinite gain margin and the following phase margin:

SR E B N S (4.18)

Thus, 0 = 0 for T = 2, O = 60° for T = l, and @ - 90° as T - 0. From the well
known circle criterion the nonlinear function y(t) > %-can be allowed in the

closed-loop without destroying its stability. This is consistent with Theorem

4.1.




V. Conclusions

It has been recognized that relatively few optimal control problems lead
to stable linear feedback control laws, particularly for time-varying linear
systems. In this paper an unconventional optimal control problem has been
introduced whose modification leads to a stable control. Since the stabilizing
feedback gains are obtained by integrating a Riccati equation over a finite
time interval, its computation should be easy with modern computers. The
control law (4.5) employing (4.12) is one of the easiest ways to stabilize a
linear time invariant system like the one in [3], since the gain matrix can be
obtained by a single integration of a Riccati-type equation as indicated in
(4.12). The results indicate that a short receding horizon distance T should
be chosen when large nonlinearities exist in the feedback loop. Stabilization

with a prescribed degree of stability can be obtained exactly the same as in [2].
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Nonlinearity

N P> x(t) = A(t)x(t) + B(t)u(t)

RL0)B (0)F (e, eem) |

Fig. 1. Nonlinearity in the Feedback Loop
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Fig. 2. A Nyquist Plot of -Z(ij~A)-1b
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